

Probabilistic Model Incorporating Auxiliary

Covariates to Control FDR

Lin Qiu 1 , Nils Murrugarra-Llerena 2 , Vítor Silva 3 , Lin Lin 4 and Vernon M. Chinchilli 1

lin.qiu.stats@gmail.com, nmurrugarrallerena@weber.edu, vitor.silva.sousa@gmail.com, l.lin@duke.edu, vchinchi@psu.edu

Motivation

- Multiple Hypothesis Testing (MHT) is used in different domains to discovery unique data instances.
- Existing solutions maximize the number of discoveries while controlling False Discovery Rate (FDR).
- For example, identifying most engaging snaps (social media posts).
- Popular: Most engaging SnapsNormal: Average engaging Snaps

• Lack of analysis based on complementary information, e.g., auxiliary variables.

Key idea

• MHT model that jointly learns test and auxiliary variables through a neural network.

Approach

- We optimize parameters to maximize the complete data log-likelihood.
- •We employ a deep neural network to learn a β distribution that combines test-level and auxiliary covariates.
- For optimization purposes, we used Stochastic Gradient Descent (SGD) with an L2 regularizer.

Case studies and evaluation

[Datasets]

- Cancer drug screening data. Identify how a cell line responded to a drug treatment.
- •RNA-Seq data. Analyze RNA sequences by using log count for each gene (n=33,469) as the test-level covariate and p-value as the auxiliary covariate.
- Snap visual tags data. Identify top engaged contents using Snap visual tags dataset.

RNA-Seq: Blue and orange represents the null and alternative discoveries respectively.

Snap visual tags: NeurT-FDRa discoveries.

Conclusions

- •We proposed NeurT-FDR, which combines testlevel and auxiliary covariates to find commonalities among these variables.
- This combination identifies more discovery under a reliable FDR of 0.1.